Madre de Dios: 22 kids utilizing technology to combat deforestation

400 students at La Pampa College are able to monitor the schools forests themselves.

Madre de Dios: 22 kids utilizing technology to combat deforestationA group of 22 adolescents at I.E. Virgen de la Candelaria continue to learn about and monitor their 7 hectare forest near their school, thanks to the donation of various technological kits.

The kits were delivered on November 18th, and they consisted of a DJI model drone Mavic 2 Zoom, a special carrier case, two additional batteries, an iPad mini with an adaptor to control the drone, and two cameras for recording.

After a year of training with the new technology and learning through the Techcamp: Aprender Conservando program, the students can now teach others how to use the drones and cameras. They will continue under the supervision of their professors and specialists at Conservación Amazónica – ACCA when it’s required.

The students presented their project at local and regional science fairs, placing third in the Madre de Dios region.

Thanks to the financial aid of the United States, the Techcamp: Aprender Conservando from Conservación Amazónica – ACCA project has finally become a project large enough for national recognition, becoming the first of it’s type in the Madre de Dios region. The initiative sought to teach students about new technologies and how to use them to care of the Amazon.  What sparked their interest in conservation of rainforests was places like La Pampa, where caring for ecosystems is a valiant mission, and the only hope for conservation is biodiversity.

 

MAAP #113: Satellites Reveal What Fueled Brazilian Amazon Fires

As part of our ongoing coverage, we present two key new findings about the Brazilian Amazon fires that captured the world’s attention in August (see our novel satellite-based methodology below).

First, we found that many of the fires, covering over 450,000 hectares, burned areas recently deforested since 2017 (orange in Base Map). That is a massive area equivalent to over a million acres (or 830,000 American football fields), mostly in the states Amazonas, Rondônia, and Pará.

Importantly, 65% (298,000 hectares) of this area was both deforested and burned this year, 2019.

satellites-reveal-what-fueled-brazilian-amazon-fires-BrazilianAmazon-Fires
Base Map. Brazilian Amazon 2019. Data: UMD/GLAD, NASA (MODIS), DETER, Hansen/UMD/Google/USGS/NASA.

Second, we found 160,400 hectares of primary forest burned in 2019 (purple in Base Map).* Most of these areas surround deforested lands in the states of Mato Grosso and Pará, and were likely pasture or agricultural fires that escaped into the forest.

As far as we know, these are the first precise estimates based on detailed analysis of satellite imagery. Other estimates based solely on fire alerts tend to greatly overestimate burned areas due to their large spatial resolution.

Below we present a series of satellite time-lapse videos showing examples of the different types of fires we documented.

 

 

 


Policy Implications

The policy implications of these findings are critically important: national and international focus needs to be on minimizing new deforestation, in addition to fire prevention and management.

That is, we need to recognize that many of the fires are in fact a lagging indicator of previous deforestation, thus to minimize fires we need to minimize deforestation.

For example, one of the leading deforestation drivers in the Brazilian Amazon is cattle ranching (1, 2, 3). What measures can be taken to prevent the further expansion of the ranching frontier?

 


Satellite Time-lapse Videos

Deforestation Followed by Fire

Video A shows the deforestation of 1,760 hectares (4,350 acres) in Mato Grosso state in 2019 (May to July), followed by fires in August. Planet link.

Video B shows the deforestation of 650 hectares (1,600 acres) in Rondônia state in 2019 (April to July), followed by fire in August. Planet link.

 


Deforestation Caused by Fire

Videos C-D show 2019 fires burning primary or secondary forest surrounding recently or previously cleared areas.

*Notes

In addition to the finding of 160,400 hectares of primary forest burned in 2019, we also found: 25,800 hectares of secondary forest burned in 2019;
35,640 hectares of primary forest burned in the northern state of Roraima in March 2019 (plus an additional 16,500 hectares of secondary forest.

 


Methodology

Deforestation Fires

We created two “hotspots” layers, one for deforestation and the other for fires, by conducting a kernel density analysis. This type of analysis calculates the magnitude per unit area of a particular phenomenon, in this case forest loss alerts (proxy for deforestation) and temperature anomaly alerts (proxy for fires)

Specifically, we used the following data three sets:

2019 GLAD alert forest loss data (30 meter resolution) from the University of Maryland and available on Global Forest Watch.

2017 and 2018 forest loss data (30 meter resolution) from the University of Maryland and available on Global Forest Watch (4).

NASA’s Fire Information for Resource Management System (FIRMS) MODIS-based fire alert data (1 km resolution).

We conducted the analysis using the Kernel Density tool from Spatial Analyst Tool Box of ArcGIS, using the following parameters:

Search Radius: 15000 layer units (meters)
Kernel Density Function: Quartic kernel function
Cell Size in the map: 200 x 200 meters (4 hectares)
Everything else was left to the default setting.

For the Base Map, we used the following concentration percentages: Medium: 10%-25%; High: 26%-50%; Very High: >50%. We then combined all three categories into one color (yellow for deforestation and red for fire). Orange indicates areas where both layers overlap. As background layer, we also included pre-2019 deforestation data from Brazil’s PRODES system.

We prioritized the orange overalp areas for further analysis. For the major orange areas in Rondônia, Amazonas, Mato Grosso, Acre, and Pará, we conducted a visual analysis using the satellite company Planet’s online portal, which includes an extensive archive of Planet, RapidEye, Sentinel-2, and Landsat data. Using the archive, we identified areas that we visually confirmed a) were deforested in 2017-19 and b) were later burned in 2019 between July and September. We then used the area measure tool to estimate the size of these areas, which ranged from large plantations ( ~1,000 hectares) to many smaller areas scattered across the focal landscape.

Forest Fires:

To estimate forests burned in 2019 we combined analysis of several datasets. First, we started with 30 meter resolution ‘burn scar’ data produced by INPE (National Institute for Space Research) DETER alerts, updated through October 2019. In order to avoid overlapping areas, we eliminated alerts previously reported from 2016 to 2018, and alerts from other land use categories (selective logging, deforestation, degradation and mining, and other). Second, we eliminated previously reported 2001-18 forest loss from University of Maryland and INPE (PRODES). Third, to distinguish burning of primary and secondary forest, we incorporated primary forest data from the University of Maryland (5).

 


References

  1. Krauss C, Yaffe-Bellany D, Simões M (2019) Why Amazon Fires Keep Raging 10 Years After a Deal to End Them. New York Times. https://www.nytimes.com/2019/10/10/world/americas/amazon-fires-brazil-cattle.html
  2. Kelly M, Cahlan S (2019) The Brazilian Amazon is still burning. Who is responsible? Washington Post. https://www.washingtonpost.com/politics/2019/10/07/brazilian-amazon-is-still-burning-who-is-responsible/#click=https://t.co/q2XkSQWQ77
  3. Al Jazeera (2019) See How Beef Is Destroying The Amazon. https://www.youtube.com/watch?v=9o2M_KL8X6g&feature=youtu.be
  4. Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53.
  5. Turubanova S., Potapov P., Tyukavina, A., and Hansen M. (2018) Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environmental Research Letters https://doi.org/10.1088/1748-9326/aacd1c 

 


Acknowledgements

This work was supported by the following major funders: MacArthur Foundation, International Conservation Fund of Canada (ICFC), Norwegian Agency for Development Cooperation (NORAD), Metabolic Studio, and Global Forest Watch Small Grants Fund (WRI).

Citation

Finer M, Mamani N (2019) Satellites Reveal what Fueled Brazilian Amazon Fires. MAAP: 113.

A New Science-based Monitoring Tool To Improve Communities’ Brazil Nut Production

The vastness of the Bolivian Amazon makes it a daunting task to understand the plant species that live in it, where they are located, and the status of their health. Knowing where key plant species are in a forest can help answer questions that improve forest and biodiversity conservation decisions. Improved understanding of the forest and its composition also makes forest production easier for communities in conservation areas like Santa Rosa de Abuná, who live off harvesting forest products sustainably. Finding a mature Brazil nut tree can mean having to walk for an entire day or more in heavy forest terrain, since no forest inventory exists for most conservation areas in the country.

To this end, we have developed an innovative computer model to detect, analyze, and classify Brazil nut tree using remote sensing, drones and photogrammetric analysis. The model can analyze the density of Brazil nut trees using satellites with a 10 meter resolution and validate that information through a series of complex orthomosaics built with photographs taken by drones. To date, we have collected information on over 53,000 Brazil nut trees which helps clarify species density, potential production and forest health.

Images taken from satellite are the first step in our model to identify Brazil nuts without humans having to do the tradition manual census on foot
Images taken from satellite are the first step in our model to identify Brazil nuts without humans having to do the tradition manual census on foot

We have been able to pilot and roll out the tool to 11 of the 19 communities in the Santa Rosa de Abuná conservation area. The model was met with much excitement from the communities, as they recognize the benefit that this technology can bring to them to map, plan and reduce the on-the-ground effort needed to manage this labor- intensive forest product.

An exciting aspect of the potential of this tool is that, with some investment and adjustments, it can be used to detect and track other forest species. We are now determining what our next application of this incredible technology will be: it could support scientists in conducting scientific studies, help local authorities track illegal logging of high-value species, and in making the case to governments to prioritize the protection of forests.

This work was made possible thanks to the generosity and support from The Sheldon and Audrey Katz Foundation.

 

MAAP #112: Mennonite Colonies – New Deforestation Driver in the Amazon

Time-lapse deforestation in the “Tierra Blanca” Mennonite colony in Loreto, Peru. Data: Planet.

The Mennonites, a religious (Christian) group often dedicated to organized agriculture, are increasingly inhabiting the western Amazon (Peru and Bolivia).

Here, we reveal the recent deforestation of 18,500 acres (7,500 hectares) in three Mennonite colonies (see the Base Map below).

The two colonies in Peru (Tierra Blanca and Masisea) are new, causing the deforestation of 6,200 acres since 2017 (including 3,500 acres in 2019) in the Loreto and Ucayali regions.

The colony in Bolivia (Río Negro) is older, but deforestation recently began to increase again, causing the deforestation of 12,350 acres since 2017 in the department of Beni.

Next, we present a series of satellite image videos showing the deforestation in the three Mennonite colonies.

MAAP #111: Fires in the Bolivian Amazon – Using Google Earth Engine to Monitor

Recent fire in the dry forests of the the Bolivian Amazon. Data: Planet.

We begin a new series on how to harness the power of the cloud to improve real-time monitoring in the Amazon and beyond.

As the amount of data from satellite images has skyrocketed, so have the challenges of research teams to fully utilize this abundant and heavy (in terms of terabytes) information.

In response, tech companies such as Google, Amazon, and Microsoft have been offering their powerful computer power, via the internet (cloud), to help process, analyze, display, and store big data.

Here, we feature Google Earth Engine, which is designed for the free processing of geospatial information (including satellite imagery) and publishing results on web applications.

In our first example, we show the power of Google Earth Engine to help with fire monitoring in the Bolivian Amazon. As noted in our previous reports, the 2019 fire season in Bolivia has been intense, with numerous major fires in the Amazonian dry forests and savannas.

There is currently an urgent need for real-time monitoring of active fires to assist ongoing fire management efforts at the national level. In response, we developed the application described below.

MAAP #110: Major Finding – Many Brazilian Amazon Fires Follow 2019 Deforestation

In MAAP #109 we reported a major finding critical to understanding this year’s fires in the Brazilian Amazon: many of the 2019 fires followed 2019 deforestation events.

Here, we present our more comprehensive estimate: 125,000 hectares (310,000 acres) deforested in 2019 and then later burned in 2019 (July-September). This is equivalent to 172,000 soccer fields.*

Thus, the issue is both deforestation AND fire; the fires are often a lagging indicator of recent agricultural deforestation.

This key finding flips the widely reported assumption that the fires are burning intact rainforests for crops and cattle.

Instead, we find it’s the other way around, the forests were cut and then burned, presumably to enrich the soils. It is “slash and burn” agriculture, not “burn and slash.”

The policy implications are important: national and international focus needs to be on minimizing new deforestation, in addition to fire prevention and management.

This breakthrough data is based on our analysis of an extensive satellite imagery archive, allowing us to visually confirm areas that were deforested in 2019 and later burned in 2019 (see Methodology).

Below we present a new series of 7 striking timelapse videos that vividly show examples of 2019 deforestation followed by fires (See Base Map below for exact zoom locations).

MAAP #109: Fires and Deforestation in The Brazilian Amazon, 2019

Base Map. 2019 deforestation and fire hotspots in the Brazilian Amazon. Data: UMD/GLAD, NASA (MODIS), PRODES

The fires in the Brazilian Amazon have been the subject of intense global attention over the past month.

As part of our ongoing coverage, we go a step further and analyze the relationship between fire and deforestation in 2019.

First, we present the first known Base Map showing both 2019 deforestation and fire hotspots, and, importantly, the areas of overlap. The letters correspond to Zooms below.

Second, we present a series of 16 high-resolution timelapse videos (Zooms A-K), courtesy of the satellite company Planet. They show five scenarios that we have documented thus far in 2019:

  1. Deforestation (No Fire)
  2. Deforestation (Followed by Fire)
  3. Agriculture Fire
  4. Savanna Fire
  5. Forest Fire

The key finding is that Deforestation (Followed by Fire) is critically important to understanding this year’s fire season (see Zooms B-E).

We documented numerous cases of 2019 deforestation events followed by intense fires, covering at least 52,500 hectares (130,000 acres) and counting. That is equivalent to 72,000 soccer fields.

The other common scenario is Agriculture Fire in areas cleared prior to 2019, but close to surrounding forest (see Zooms F and G).

We are also now seeing more examples of Savanna Fire in grassland areas among the rainforest. These fires can be large — we show a 24,000 hectare burn (60,000 acres) in Kayapó indigenous territory (see Zoom H).

We did not observe major Forest Fires in the moist Brazilian Amazon during August, but we did document such fires in early March in Roraima state. As the dry season continues into September and October, however, forest fires become a greater risk.

Our Progress on the 2019 Amazon Fires

Volunteer holding 50 fire protection vests
Volunteer holding 50 fire protection vests
Tools for the fire hose pump
Fire hose tools

As part of our current fire management efforts in Bolivia, we have been working with several organizations to generate reliable information to implement actions that are helping firefighters and inhabitants of affected areas. We have also been providing communities and governments with fire prevention training and supplies, so that local people can be better prepared and at the forefront of preventing and fighting forest fires.

Donations that we have received have been turning into immediate action during the heart of the fire season, enabling us to move quickly to support communities and governments in firefighting and prevention efforts.

MAAP #108: Understanding The Amazon Fires With Satellites, Part 2

Base Map. Updated Amazon fire hotspots map, August 20-26, 2019. Red, Orange, and Yellow indicate the highest concentrations of fire, as detected by NASA satellites that detect fires at 375 meter resolution. Data. VIIRS/NASA, MAAP.
Base Map. Updated Amazon fire hotspots map, August 20-26, 2019. Red, Orange, and Yellow indicate the highest concentrations of fire, as detected by NASA satellites that detect fires at 375 meter resolution. Data. VIIRS/NASA, MAAP.

Here we present an updated analysis on the Amazon fires, as part of our ongoing coverage and building off what we reported in MAAP #107.

First, we show an updated Base Map of the “fire hotspots” across the Amazon, based on very recent fire alerts (August 20-26). Hotspots (shown in red, orange, and yellow) indicate the highest concentrations of fire as detected by NASA satellites.

Our key findings include:

– The major fires do NOT appear to be in the northern and central Brazilian Amazon characterized by tall moist forest (Rondônia, Acre, Amazonas, Pará states),* but in the drier southern Amazon of Brazil and Bolivia characterized by dry forest and shrubland (Mato Grosso and Santa Cruz).

– The most intense fires are actually to the south of the Amazon, along the border of Bolivia and Paraguay, in areas characterized by drier ecosystems.

– Most of the fires in the Brazilian Amazon appear to be associated with agricultural lands. Fires at the agriculture-forest boundary may be expanding plantations or escaping into forest, including indigenous territories and protected areas.

– The large number of agriculture-related fires in Brazil highlights a critical point: much of the eastern Amazon has been transformed into a massive agricultural landscape over the past several decades. The fires are a lagging indicator of massive previous deforestation.

– We continue to warn against using satellite-based fire detection data alone as a measure of impact to Amazonian forests. Many of the detected fires are in agricultural areas that were once forest, but don’t currently represent forest fires.

In conclusion, the classic image of wildfires scorching everything in their path are currently more accurate for the unique and biodiverse dry forests of the southern Amazon then the moist forests to the north. However, the numerous fires at the agriculture-moist forest boundary are both a threat and stark reminder of how much forest has been, and continues to be, lost by deforestation.

Next, we show a series of 11 satellite images that show what the fires look like in major hotspots and how they are impacting Amazonian forests. The location of each image corresponds to the letters (A-K) on the Base Map.

*If anyone has detailed information to the contrary, please send spatial coordinates to maap@amazonconservation.org

Zooms A, B: Chiquitano Dry Forest (Bolivia)

Some of the most intense fires are concentrated in the dry Chiquitano of southern Bolivia. The Chiquitano is part of the largest tropical dry forest in the world and is a unique, high biodiversity, and poorly explored Amazonian ecosystem. Zooms A-C illustrate fires in the Chiquitano between August 18-21 of this year, likely burning a mixture of dry forest, scrubland, and grassland.

Zoom A. Recent fires in the dry Chiquitano of southern Bolivia. Data- Planet
Zoom A. Recent fires in the dry Chiquitano of southern Bolivia. Data- Planet

Zoom B. Recent fires in the dry Chiquitano of southern Bolivia. Data- Planet.
Zoom B. Recent fires in the dry Chiquitano of southern Bolivia. Data- Planet.

Zoom D: Beni Grasslands (Bolivia)

Zoom D. Recent fires and burned areas in Bolivia’s Beni grasslands. Data- ESA
Zoom D. Recent fires and burned areas in Bolivia’s Beni grasslands. Data- ESA

Zooms E,F,G,H: Brazilian Amazon (Amazonas, Rondônia, Pará, Mato Grosso)

Zoom E-H take us to moist forest forests of the Brazilian Amazon, where much of the media and social media attention has been focused. All fires we have seen in this area are in agricultural fields or at the agriculture-forest boundary. Note Zoom E is just outside a national park in Amazonas state; Zoom F shows fires at the agriculture-forest boundary in Rondônia state; Zoom G shows fires at the agriculture-forest boundary within a protected area in Pará state; and Zoom H shows fires at the agriculture-forest boundary in Mato Grosso state.

Zoom E. Fires at the agriculture-forest boundary outside a national park in Amazonas state. Data- Planet
Zoom E. Fires at the agriculture-forest boundary outside a national park in Amazonas state. Data- Planet
Zoom F. Fires at the agriculture-forest boundary in Rondônia state. Data- ESA
Zoom F. Fires at the agriculture-forest boundary in Rondônia state. Data- ESA

 

Zoom G. Fires at the agriculture-forest boundary within a protected area in Pará state
Zoom G. Fires at the agriculture-forest boundary within a protected area in Pará state

 

Zoom H. Fires at the agriculture-forest boundary in Mato Grosso. Data- ESA
Zoom H. Fires at the agriculture-forest boundary in Mato Grosso. Data- ESA

Zooms I, J: Southern Mato Grosso (Brazil)

Zooms I and J shows fires in grassland/scrubland at the drier southern edge of the Amazon Basin. Note both of these fires are within Indigenous Territories.

Zoom I. Fires within an Indigenous Territory at the drier southern edge of the Amazon Basin. Data- Planet
Zoom I. Fires within an Indigenous Territory at the drier southern edge of the Amazon Basin. Data- Planet
Zoom J. Fires within an Indigenous Territory at the drier southern edge of the Amazon Basin. Data- Planet
Zoom J. Fires within an Indigenous Territory at the drier southern edge of the Amazon Basin. Data- Planet

Zooms C, K: Bolivia/Brazil/Paraguay Border

Zooms C and K show large fires burning in the drier ecosytems at the Bolivia-Brazil-Paraguay border. This area is outside the Amazon Basin, but we include it due it’s magnitude.

Zoom C. Recent fires in the dry Chiquitano of southern Bolivia. Data- Planet
Zoom C. Recent fires in the dry Chiquitano of southern Bolivia. Data- Planet
Zoom K. Large fires burning around the Gran Chaco Biosphere Reserve. Data- NASA:USGS.
Zoom K. Large fires burning around the Gran Chaco Biosphere Reserve. Data- NASA:USGS.

Acknowledgements

We thank  J. Beavers (ACA), A. Folhadella (ACA), M. Silman (WFU), S. Novoa (ACCA), M. Terán (ACEAA), and D. Larrea (ACEAA) for helpful comments to earlier versions of this report.

This work was supported by the following major funders: MacArthur Foundation, International Conservation Fund of Canada (ICFC), Metabolic Studio, and Global Forest Watch Small Grants Fund (WRI).

Citation

Finer M, Mamani N (2019) Seeing the Amazon Fires with Satellites. MAAP: 108.

Real-Time Satellite Information and Images of What is Happening in the Amazon

Following up on the current fires in the Amazon forests of Brazil, Bolivia, and Peru, we want to share with you our latest analysis of the situation. Please see today’s MAAP report, which provides real-time satellite data of the region and shows up-close satellite images of what the fires actually look like across all three countries, and how they are impacting Amazonian forests.

Continuous uncontrolled fires of this scale will bring the forest closer to an irreversible tipping point – a degree of deforestation at which the Amazon basin will no longer be able to generate its own rainfall and will become a fire-prone savanna. Some estimates place the level of deforestation needed to reach this tipping point at 20-25%. Current deforestation is at 17%.

That’s why our forest conservation efforts focus on prevention. We partner with local communities and landowners to develop and implement sustainable practices for forests and agricultural lands that reduce deforestation and build resilience against fires. We also work with national and municipal governments in Peru and Bolivia to ensure the protection of conservation areas that help keep us from reaching that tipping point.

In response to the current fires, we are collaborating with actors on the ground in Peru and Bolivia to generate reliable information to implement actions that will help local organizations and residents of the affected areas. Although we do not work on the ground in Brazil, our deforestation reports are available to the Brazilian government and public.

Read our latest MAAP report.